WATER WORLDS?

Dennis Hoening Cristina Da Lio Stefano Basso Youmin Chen **Basudew Biswal** Christian Birkel Nick Odoni **Stuart Daines** Tim Lenton

BESS SUMMER SCHOOL ON BIOGEODYNAMICS AND EARTH SYSTEM SCIENCES

VENICE 2011

Motivation - Water and Life

- Philosophical question: Is there life on other planets?
- Liquid water is (probably) required for the origin and developement of life (solution, photosynthesis, breathing...)
- Small range for liquid water (0°C to 100°C at 1 bar)
 - Aim: Searching for planets with conditions, where liquid water could exist

Search for extraterrestrial water

- **1235** possible extra-solar planet candidates detected by NASA's planet-hunting Kepler space telescope during its first four months of operation.
- **54** are orbiting in the parent star's habitable zone where liquid water could exist.
- 5 of these are near Earth-size.
- The remaining **49** candidates range from twice the size of Earth to larger than Jupiter.

Albedo and Temperature

$$T_{surf}^{4} = (1 - a) \frac{E}{4\pi D^{2}} \frac{1}{4\sigma} \left(1 + \frac{3}{4}\tau \right)$$
$$\tau = k_{\tau} \rho_{w}^{0.5}$$
$$\rho_{w} = \xi P_{0} exp\left(-L/RT_{surf}\right)$$

L = Latent heat of vaporization.

 $R = \text{Molar gas constant } (=8.34 \text{ ml}^{-1}\text{K}^{-1}).$

$$P_0 = 1.4*10^{11} \, \text{Pa}.$$

$$\sigma = 5.67*10^{-8} \text{ Wm}^{-2}\text{k}^{-4}$$
.

 ξ = relative humidity, equal to 0.62 for earth.

a = albedo, equal to 0.225 for earth.

 $\tau = 0.41$ (water) + 0.244 (green house gasses).

Temperature and albedo with and without greenhouse (vapor and CO2) effect

Case1:

Albedo=0.22,

T1=-11.3

T2=15.5

Diff=26.8

Case2:

Albedo=0.30,

T1=-18.2

T2=7.8

Diff=25.0

df < 0.95 A.U. & $df > 1.1 \text{ A.U.} \rightarrow no \ liquid \ water \rightarrow no \ life$

VARIABLE ALBEDO

$$T_{surf} = (1-a)\frac{E}{4\pi D^2} \frac{1}{4\sigma} \left(1 + \frac{3}{4}\tau\right)$$

$$\tau = \tau_{H_2O} + \tau_{CO_2}$$

$$\tau_{CO_2} = 1.73 \cdot p_{CO_2}^{0.263}$$

 $WATER VAPOUR + CO_{2}$

$$p_{CO_2} = p_{0,CO_2} \left(\frac{V}{V_0}\right)^{\frac{10}{3}} \exp\left\{-\frac{(T - T_{eq})}{4.11}\right\}$$

habitable zone (no internal heating through radioactive decay)

habitable zone (internal heating through radioactive decay for different planet sizes, $\varepsilon=1$)

ε: Emissivity (ε=1 for no other greenhouse-gases then water-vapor)

E. Tajika 2007

- Does the HZ vary with tidal forces?
 - ➤ It should! (e.g. Io)
 - $> F_{tid} \sim M/d^3$
 - Huge effects on the int.
 heat flux of planets near
 their sun
 - ➤ But: These planets should already be tidaly locked!

 (Kasting et al. 1993)

Picture: NASA

Interactoin between Small planets or moons

GANYMED 1:1
EUROPA 2:1
IO 4:1
JUPITER

young solar system

habitable zone could change dramatically !!

Outlook

- 1. Relative humidity how does this vary with surface temperature and total water content?
- 2. What is the effect of CO2 atmosphere without presence of water?
- 3. How can we derive values of empirical parameters from basic physics and not from model calibration?
- 4. How should albedo vary with different water content?
- 5. How does this work in a tidally "locked" planet?