Tipping points and early warning signals

Summer School on Biogeodynamics and Earth System Sciences Venice, June 2011

Luis Cueto-Felgueroso Sebastian Sonntag GW Advisor: Tim Lenton

What is a tipping point?

Where are tipping points?

Everywhere

What happens near a tipping point?

What happens near a tipping point?

- slowing down recovery from perturbations
- increasing memory, i.e. autocorrelation
- shift of power to lower frequencies
- increasing variance
- increasing skewness

But: Noise induced transition

But: Noise induced transition

fundamentally unpredictable

Can we detect an early warning signal for a greening desert?

Can we detect an early warning signal for a greening desert?

- model of vegetation dynamics of arid ecosystems
- involves positive feedback between vegetation and soil water availability

Model equations

$$\frac{\partial O}{\partial t} = R - \alpha O \frac{P + k_2 W_0}{P + k_2} - l_0 O$$

surface water

$$\frac{\partial W}{\partial t} = \alpha O \frac{P + k_2 W_0}{P + k_2} - g \frac{W}{W + k_1} P - r_w W$$

soil water

$$\frac{\partial P}{\partial t} = cg \frac{W}{W + k_1} P - dP$$

plant density

Model equations

rainfall

$$\frac{\partial O}{\partial t} = R + \alpha O \frac{P + k_2 W_0}{P + k_2} + l_0 O$$

surface water depth

infiltration

runoff/evaporation

$$\frac{\partial W}{\partial t} = \alpha O \frac{P + k_2 W_0}{P + k_2} \left(g \frac{W}{W + k_1} P \right) - (r_w W)$$

soil water

infiltration

uptake

drainage

$$\frac{\partial P}{\partial t} = cg \frac{W}{W + k_1} P + dP$$
uptake
mortality

plant density

sample simulation

...with noise

bistability (same parameters, different initial condition)

hysteresis diagram

hysteresis diagram, bistability

hysteresis diagram, bistability

effect of noise near transition

driving the system over the edge

driving the system over the edge

hysteresis

time domain

hysteresis

time domain

phase space

hysteresis

time domain

phase space

SlowdownTime to recover 10% reduction in P

Time series analysis variance, autocorrelation...

Time series analysis detrend with moving average

Time series analysis detrend with moving average

Time series analysis

Is the system moving towards a cliff?

Can we forecast a regime shift? Maybe...

Can we forecast a regime shift?

Maybe...

...probably not for this model

Can we forecast a regime shift?

Maybe...

...probably not for this model

Need to develop robust indicators