BESS Summer School

Argo Quality Control Analysis

Supervisors: Robert Gurney, Francois Taiani

Analysis sub-group

- Alastair Gemmell
- Jennine Jonczyk
- Dusan Kostic
- Ulirich Weber

Visualisation sub-group

- Radoslaw Guzinski
- Fei Ma
- Eleanor Mackay
- Mark Wilkinson

What are Argo floats?

- Autonomous profiling floats. Phased in since ~2000
- Goal of 3000 floats was achieved by 2007
- 10 day cycle
 - Mostly float at (up to) 2000m depth
 - Every 10 days ascend, collecting data on Temperature and Salinity at frequent depth intervals
 - At surface transmit latest profile data via satellite to operational centres and Argo data centres
- Paradigm shift in sampling of T and S in the ocean
- Undergo real time QC 'quick and dirty'
 - This is updated months later by the results of detailed DELAYED MODE QC. This is what we are looking at

Where are Argo floats?

The data for this project

Argo Data

- Detailed delayed mode Quality Control.
- → Profiles are coded as containing percentages of Good Data:

• Code 0 :	GD = 0
• Code 1:	0 < GD <= 25
• Code 2 :	25 < GD <= 50
• Code 3:	50 < GD <= 75
• Code 4 :	75 < GD < 100
• Code 5 :	GD = 100

- Accept/Reject decisions from operational centres
 - Courtesy of Jim Cummings at US Navy via the GODAE project

Available for:

- <u>BMRC</u>: Australia's **B**ureau of **M**eteorology **R**esearch **C**entre
- <u>FNMOC</u>: US Navy's Fleet Numerical Meteorology and Oceanography Center
- <u>MEDS</u>: Canada's Marine Environment Data Service
- UKMO: UK's Met Office

Motivation

- Data assimilation extremely important for accuracy of forecasts
- Argo floats important source of these data
- Operational centres must QUICKLY decide to accept or reject recent Argo profiles
- They don't have time to wait for detailed QC done by Argo project
- So...how accurately can they detect profiles which (upon detailed analysis) are later shown by the Argo project to contain bad data?

Distibution of quality indicators

Indicators as dependent variables

First Look.....

Q: is it worse to accept bad data or reject good data?

Any particular times?

EXCEPT:

Good data rejected in 2007

Bad data accepted in 2008

Data availability in days/year (bin=3)

Spatial extend of QC dataset

Spatial extend of all.valid.argo.float (-999 excluded) + coloured paths of sel.argo.float

data\$lon

Histogram of Valid Argo.floats per meassurement

valargo

1 deg grid Cumulative Argo Counts

Clustering

	Day 1	Day 2			Day 365
d_mode_qc	0	0	0	0	0
bmrc-qc	55	0	0	55	55
fnmoc_qc	0	0	0	0	0
meds_qc	55	50	0	55	0
ukmo_qc	0	0	0	0	0

STDDEV(TOTAL, 2)

out

Recall and Precision

Metrics to measure degree of success of the operational centres in detecting the bad data

Recall and Precision

Total: 142229

Recall = what proportion of the bad data did they detect?
 > 269 / 1204 = 22.3%

Precision = what proportion of their rejects were actually bad?
 > 269 / 530 = 50.8%

Recall and Precision by Centre

Recall and Precision over time

Google Earth – Salinity quality visualisation

- Salinity Quality code (QC)data was used
- Q.C. is ranked 0 to 5
- D_Mode QC was subtracted from data centre QC to produce a ranking system
 - 5 Data centre wrongly rejected the data
 0 Data centre QC matched the D_mode
 -5 Data centre wrongly accepted the data

Google Earth – Salinity quality visualisation

 Raster maps were produced in ArcGIS and then exported into Google Earth. This file can easily be downloaded from the web:

http://dl.dropbox.com/u/29469014/Centres_sal.kmz

 Inverse distance weighting (IDW) is a method for multivariate interpolation

Algorithm Input / Output

- Two data sets two values e.g: select where d_mode_qc = good AND bmrc_qc = bad
- Other inputs:
 - Colour, presentation, temperature or salinity, comparison operator
- Output: KML file showing
 - Location of the selected floats on the globe
 - Percentage of floats that met the condition in an area

Internal Work

- Data kept in text file
- Open the file and:
 - Scan the file line by line
 - Evaluate the condition
 - → IF pins:
 - Create KML pin
 - → IF grid:
 - Bin the result
 - Compute statistic
 - Create Grid
 - Output KML file

Online visualisation

Query options

Please select the year:

○2006 ○2007 ⊙2008 ○2009

submit!

User Queries

1. Select data centre

२) 🔏 🛛 🚇

The BESS Argo Float QC Explorer

🗋 (http://argoqcvisualiser.appspot.c. 😭 🔻 🕄 🕻 Google

Done

C

ZOOM...

http://argoqcvisualiser.appspot.com/

Summary 1

- All centres have relatively low recall rates for bad data
- Precision rates are much lower for MEDS and FNMOC suggesting fundamental differences in qc methodology compared to BMRC and UKMO
- Most accepted data is of good quality
- There is a high consistency between temperature and salinity qc values
- No particular time of year that causes more good or bad data

Summary 2

- Spatial-temporal clustering' may be a good tool for evaluating the consistency of argo floats in terms of data quality
- Visualisation tools such as Google Earth have the potential to provide a powerful way to visualise large spatial datasets
- Online application of visualisation tools can provide the ability for rapid and simple queries for a large number of potential users