Biogeodynamics and Earth System Sciences Summer School (BESS)

Data Assimilation for the Lorenz (1963) Model using Ensemble and Extended Kalman Filter

D. Pasetto ^(a) and C. Vitolo ^(b)

Advisor M.Ghil, ENS & UCLA

^(a) Universita' di Padova (Italy)

(b) Imperial College London (UK)

Data Assimilation for the Lorenz model using Ensemble and Extended Kalman Filter

OUTLINE

Data Assimilation

Kalman Filter (EnKF and EKF)

Lorenz Model

Results of Sensitivity Tests

Future Challenges

DATA ASSIMILATION

Data Assimilation is usually defined as

"Estimation and prediction (analysis) of an unknown true state by combining observations and system dynamics (model output)"

It is needed in order to:

- Reduce uncertainties and biases
- Improve forecasting
- Estimate initial state of a system (e.g. hydrologic system) from multiple sources of information
- Permit forecast adjustments

EXAMPLE

Lorenz's Model

a simplified model of thermal convection in the atmosphere.

Outcome: - No predictable

- Butterfly effect

A BIT OF MATHS...

The Lorenz model

Bistability and chaotic behaviour

Matlab code to simulate the model dynamics

Perturbation of a "true run" with a random noise to get "pseudo-observations"

$$\begin{aligned} \frac{dx}{dt} &= \sigma(y-x) \\ \frac{dy}{dt} &= x(\rho-z) - y \\ \frac{dz}{dt} &= xy - \beta z \end{aligned}$$

Where:

For the bistable behaviour:

 $\beta = 8/3$, $\rho = 1.01$, $\sigma = 10$ For the Lorenz attractor:

 $\beta = 8/3, \ \rho = 28, \ \sigma = 10$

A BIT MORE MATHS

Kalman Filter

Predict

Predicted (a priori) state estimate $\hat{\mathbf{x}}_{k|k-1} = \mathbf{F}_k \hat{\mathbf{x}}_{k-1|k-1} + \mathbf{B}_k \mathbf{u}_k$

Predicted (a priori) estimate covariance $\mathbf{P}_{k|k-1} = \mathbf{F}_k \mathbf{P}_{k-1|k-1} \mathbf{F}_k^{\mathrm{T}} + \mathbf{Q}_k$

Update

Innovation or measurement residual $\tilde{\mathbf{y}}_k = \mathbf{z}_k - \mathbf{H}_k \hat{\mathbf{x}}_{k|k-1}$ Innovation (or residual) covariance $\mathbf{S}_k = \mathbf{H}_k \mathbf{P}_{k|k-1} \mathbf{H}_k^T + \mathbf{R}_k$ Optimal Kalman gain $\mathbf{K}_k = \mathbf{P}_{k|k-1} \mathbf{H}_k^T \mathbf{S}_k^{-1}$ Updated (a posteriori) state estimate $\hat{\mathbf{x}}_{k|k} = \hat{\mathbf{x}}_{k|k-1} + \mathbf{K}_k \tilde{\mathbf{y}}_k$ Updated (a posteriori) estimate covariance $\mathbf{P}_{k|k} = (I - \mathbf{K}_k \mathbf{H}_k) \mathbf{P}_{k|k-1}$

Data assimilation in non linear models: EKF, EnKF and Particle Filters

SENSITIVITY TESTS: Number of realization of the EnKF

50

10

100

Comparison between RMSE (normalized)

SENSITIVITY TESTS: Observation Time Step

0.5

0.1

1

Comparison between RMSE (normalized)

CONCLUSIONS

Data Assimilation on the Lorenz Model using EnKF and EKF was performed:

Sensitivity tests on the number of realization on the EnKF show that N=10 is already optimal for this small model

Sensitivity tests on the observation time steps show the error increases as the amount of information provided decreases

EnKF and EKF perform similarly but EKF is to be prefered because computationally more efficient

FUTURE CHALLENGES

Further sensitivity tests (e.g. "bistable dynamics")

Parameter estimation

Utilize Data Assimilation for "real problems" (e.g. Weather predictions)

Data Assimilation for the Lorenz model using Ensemble and Extended Kalman Filter

Thanks for your attention